CLEAN ENERGY EXPLORATION

Commission Presentation March 17, 2025

- Why Clean Energy
- Technology Learning
- Future Opportunities

For Information – No Decisions

CLEAN ENERGY TECHNOLOGIES

Energy Generation

- Solar
- Wind
- Geothermal
- Fission
- Fusion
- Hydro

Energy Storage

- Pumped Storage
- Gravity
- Hydrogen
- Battery
- Compressed gas

Aggregate Fuel Mix for Washington Electric Utilities

Biomass .60%, Solar .56%, Biogas .18%, Waste .05%, Other Biogenic .04%, Geothermal .04%, Petroleum .02%

CETA

<u>Clean Energy Transformation Act -</u> <u>Washington State Department of</u> <u>Commerce</u> SB 5116, 2019

In 2026 coal will no longer be allowed to serve Washington electricity customers.

By 2030 Washington's electricity supply must be greenhouse gas neutral.

By 2045 – greenhouse gas free.

By 2050 net zero emissions from all sources – transportation, buildings, electricity, industry

Chelan PUD

Large loads from data centers and industries

•

- Increasing residential and commercial loads. Chelan County Peak 585 MW Jan. 2024.
- Electric Vehicle Energy Demand
- Grant and Douglas Counties - short energy for large loads

The Why – 2075 Vision

CHELAN PUD 2075 VISION & GUIDEBOOK

3 of 9 Goals

ENERGY & WATER FOREVER

Ensure energy and water are available for future generations, even if they cost more.

HARNESS THE POWER FRONTIER

Invest in clean energy sources to support future community needs.

FUTURE FACING

Boldy act on opportunities that can benefit Chelan County residents in the long run.

The Why

Resource Adequacy

- Future energy market requirement
- Requires a percentage of generating capacity to be held in reserve in case of unplanned loss of generation on the grid
- Reduces amount of surplus energy we can pre-sell

The Why

Subregional Snapshot Load and Demand Growth: Forecast Annual Energy and Peak Demand 2024–2033

Western Electric Coordinating Council released a report in November 2023, that predicts the potential for capacity shortfalls across the West after 2025.

Solar

CHELAN COUNTY

Solar

Utility Scale In Chelan County

- RI Dam 210 Acres, 30 MW
- Jump-off Ridge 1000 Acres, 100 MW

Just The Facts

Solar Installed (MW): 865

National Ranking: 37th (34th in 2023)

Enough Solar Installed to Power: 91,134 homes

Percentage of State's Electricity from Solar: 0.99%

Data References:

SEIA/Wood Mackenzie Power & Renewables, Solar Market Insight 2024 Yearin-Review

Solar

RI Dam Nominal 30 MW System with Battery Storage

												Ho	ur											
		0	1	2	3 4	L 5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	1	0	0	0	0 0) 0	0	0.0091	0.7814	1.4956	2.2099	3.0465	3.4509	2.7095	1.7319	1.128	0.2139	0	0	0	0	0	0	0
	2	0	0	0	0 0) 0	-8E-04	0.494	1.7071	2.5607	3.8511	4.8282	5.1869	4.1819	2.998	2.0134	1.0551	0.0639	0	0	0	0	0	0
	3	0	0	0	0 0	-7E-04	0.3866	1.4754	1.9655	4.218	9.6361	11.678	12.206	10.388	9.7263	3.0652	2.9375	0.7126	0.0032	0	0	0	0	0
	4	0	0	0	0 -5E-04	0.3338	5.104	13.675	14.241	20.773	23.705	22.581	21.561	20.948	20.929	18.962	14.954	4.3719	0.3989	-4E-04	0	0	0	0
	5	0	0	0	0 0.0339	2.7656	11.084	19.027	20.977	23.402	23.891	22.697	24.624	25.394	23.725	22.755	20.241	11.444	1.6378	0.1011	0	0	0	0
ALL .	6	0	0	0	0 0.2134	5.5606	15.049	21.249	23.117	24.854	25.397	24.718	25.061	25.866	25.695	25.411	23.996	17.154	4.592	0.386	0	0	0	0
40,	7	0	0	0	0 0.0712	4.955	16.865	26.258	27.607	27.452	27.421	27.273	27.477	26.904	26.559	25.809	24.504	17.417	3.5975	0.2314	0	0	0	0
	8	0	0	0	0 -0.001	0.6551	8.296	19.496	23.229	24.8	25.325	24.373	24.401	24.092	24.45	23.801	19.717	9.0598	0.7532	-0.002	0	0	0	0
	9	0	0	0	0 0	0.0244	2.1005	4.8259	2.662	12.161	18.521	20.239	19.116	17.971	16.248	10.694	8.0653	1.2112	0.0331	0	0	0	0	0
	10	0	0	0	0 0) 0	0.1277	1.1251	1.6341	1.9103	2.6484	4.0415	3.6283	2.6409	1.8687	1.3242	0.6516	0.0146	0	0	0	0	0	0
	11	0	0	0	0 0) 0	-7E-04	0.3275	1.2536	1.5889	2.3353	2.7475	2.6697	1.9457	1.5067	0.7956	0.0299	0	0	0	0	0	0	0
	12	0	0	0	0 0) 0	0	-0.003	0.8615	1.843	2.6273	3.5705	3.4238	2.4396	1.753	0.7283	-0.003	0	0	0	0	0	0	0

Month	Production (MW)	Seasonality
1	520.074851	1.06%
2	810.302713	1.65%
3	2120.29818	4.31%
4	6076.105401	12.36%
5	7867.746747	16.00%
6	8649.52289	17.59%
7	9622.457794	19.57%
8	7825.814501	15.92%
9	4016.16074	8.17%
10	670.083754	1.36%
11	455.994285	0.93%
12	534.47229	1.09%
Total	49169.03415	

Value = \$2.5M/year at \$50/MW Capital Cost Est. \$60M

AVINGRID - BADGER MOUNTAIN SOLAR ENERGY PROJECT

2274 Acres, 200 MW

Wind

Wind

Utility Scale in Chelan County

• Jump-off Ridge 80 MW

14 CHELAN COUNT

PSE Wild Horse Wind 11,000 ac

273 MW

149 Turbines

Online 2006

Chelan County PUD Study

Heat Potential

- Temperature Gradients
- NA-K-Ca-Mg Geothermometry
- Quartz Geothermometry
- Thermal Spring Temperatures
- Volcanic Vent Density

Permeability Potential

- Fault Density
- Dilation Strain Rate
- Max. shear strain rate
- Horizontal Gravity Gradient
- Dike Intrusion Density

Three prominent favorable areas identified:

- Glacier Peak Stratovolcano within the Cascade volcanic arc. This area contains several hot springs and fumaroles with favorable geothermometry, elevated geothermal gradient, and young volcanic vents.
- Straight Creek Fault Old, large, steep fault that appears to be a conduit for several thermal springs and localized shallow elevated geothermal gradient.
- Northern Graben Anomaly Fault complexity at the northern end of the Chiwaukum Graben where the Entiat Fault and Leavenworth Fault interact. Some indication of elevated temperatures in nearby springs.

Fission

 Splitting the nucleus of heavy atoms to release heat to generate steam to drive a turbine-generator. This is the process used in conventional nuclear power plants.

Fission Plants U.S.

Fission

The Future:

- SMR Small Modular Reactors. Small fission plants that can be more easily manufactured, transported and erected. Xe-100 (80 MW each).
- Oct 2024 Energy NW, in partnership with Amazon and X-energy, working to develop a site at Hanford to produce 320 to 960 MW utilizing SMR's. Chelan is a member of Energy NW but has not opted to purchase any new SMR output.

Fusion

- A proposed form of power generation that produces electricity by combining two lighter atomic nuclei such as Hydrogen-2 (deuterium) and Hydrogen-3 (tritium) to form a heavier nucleus such as Helium, while releasing energy.
- Fusion processes include particle accelerators, high energy lasers and magnetic confinement which create intense heat and pressure (100+million degrees, 1000 Atm).

Fusion

There are three general approaches to fusion energy

TVA signs 'landmark' agreement with Type One Energy to develop nuclear fusion pilot plant

"What we're building at Bull Run is not a science project," an executive from the Knoxville-based nuclear fusion company said.

Pumped Storage

- A type of hydro-electric energy storage where water is moved with an impeller/motor to an upper reservoir and allowed to flow back down to the lower reservoir through a turbine/generator
- 42 Sites in U.S.
- 94% of U.S Storage
- 6% Battery and other

Pumped Storage - National Hydropower Association

Pumped Storage

Figure 2. There are 67 new PSH projects across 21 states representing over 50 GWs of new long duration storage.

26

New - Goldendale Energy Storage 1200 MW for 12 Hours

Goldendale Energy Storage Project Overview

Upper Reservoir

> Underground Powerhouse

> > Lower Reservoj

MORE VIDEOS

Share

Existing Grand Coulee Pumped Storage 314 MW

Manson

971

971

Antilon Lake Evaluated - early 1970's and 2009.

971

Chelan

97

Highway 97

5000 ft

Gravity Storage Advanced Rail Energy Storage

Gravity Storage Advanced Rail Energy Storage

Siting Flexibility: Solar Farm – Washington

2

 Similar to pumped storage except without the water.

Back to tab [🛛

D

Building Gravity Storage

Can be built and used anywhere Mixed residential use From industrial to urban settings

Gondola Gravity Storage

Using nature's gravity To reduce need for manmade Structures and cost

35334-1-1-

Back to tab []

34

Energy Vault[®] - G-VAULT[™] - Gravity Energy Storage

Pilot project evaluated at Jump-off. Need property at base of the cliffs.

ENERGY VAULT

New Concept Pumped Storage

4444444444444

EVo

ENERGY VAULT

Electrolyzer (Hydrogen Production)

WA Hydrogen Projection

Hydrogen consumption and electricity demands - electrification scenario WA Dept. Commerce

Energy Storage - Batteries

Criteria for Future Energy Generating and Storage Resources

- Safe
- Affordable
- Base Load (24/7 output)
- Flexible
- Reliable
- Sustainable
- Least impact to water resources and environment

Levelized Cost of Energy -Unsubsidized Analysis

Source: Lazard's LCOE+ (April 2023)

Geothermal Resource Descriptions

Two geothermal resource development options are considered in this analysis:

- 1. Naturally circulating Hydrothermal resources
 - Temperature <200C Pumped wells
 - Temperatures >200C Self flowing wells
 - Resource is the heat.
 - All produced geothermal fluids are injected to be reheated by the rock.
 - Natural permeability for fluid circulation is either from fractures or matrix permeability
- 2. Enhanced/Engineered Geothermal Systems (EGS)
 - Temperatures >200C
 - Reservoir is created through fracturing in either impermeable rock or enhancing fractures in low permeability rock
 - Currently EGS projects are being developed at temperatures up to 300C

Hydrothermal Geothermal

Levelized Cost of Energy

• Monitor Technology Development

Partial Fusion Energy Landscape

Fusion

• Evaluate with Community: Helion locating in Chelan County

Battery Storage

Evaluating viability for:

- Minimizing use of diesel generators (Stehekin)
- System Reliability
 PSPS, Capital Deferral
- Capacity Firming
- Resource Adequacy
- Micro-Grids

Gravity Storage

Evaluating technology viability and costs

Summary

The District will continue to evaluate:

- Geothermal potential in Chelan County and the Mid-C
- Helion fusion generator in Malaga
- Battery storage use cases
- Monitor technology viability and cost of gravity storage (water and dry weights)

Questions?

